Doubled Haploid plant production Our specialty

Doubled Haploid technology speeds up plant breeding programs by many years

Partner's
elite

Technology
+ plant breeding

New elite hybrids with enhanced

- Yield potential
- Size
- Quality
- Metabolites
- Health
- Extreme weather Adaptation
- Disease and crop protection

DH technology is a non-GMO breeding tool that creates full inbred plants in one generation which are used to create elite hybrids

Why doubled haploids?

Advantages of using doubled haploid plants in your breeding program are:

- Production of 100% homozygous parent lines
- More uniform parents are derived for hybrid seed production
- Highly uniform offspring
- Speeding up breeding progress (varieties are released much faster on the market)
- Faster anticipation towards demands of customers
- Sorting out lethal genes in one step
- Identification of recessive mutants
- Creation of stable populations for genetic studies

Fytagoras' goal

Providing doubled haploid technology service to customers around the world

- Applicable for a wide range of genotypes
- Accurate risk and cost estimation
- Cost effective DH plant production

Screening of a wide range of crops

Tomatoes

Sweet pepper

Potatoes

Barley

Growth of donor plants

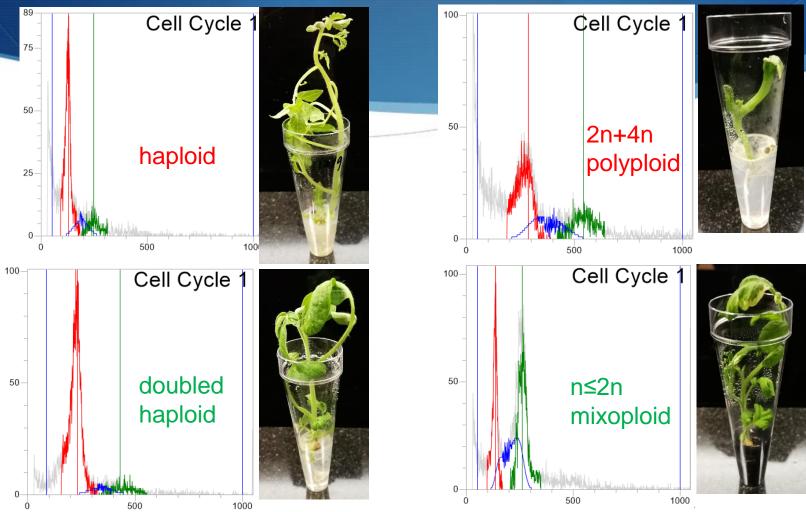
Early evaluation

 Early estimation of line responsiveness to DH protocol gives a DH production prognosis for the customer

Plated tomato DH embryo's

Embryo and plant production

Embryogenic callus


Selected DH shoots

Plantlet

Ploidy measurements with flow cytometry

Haploid, Doubled haploid and n≤2n mixoploids are difficult to identify by morphology. Polyploids are often deformed.

DH plant growth and seed production

Doubled haploid plantlets in tissue culture jars.

Delicate handling of tissue culture plants

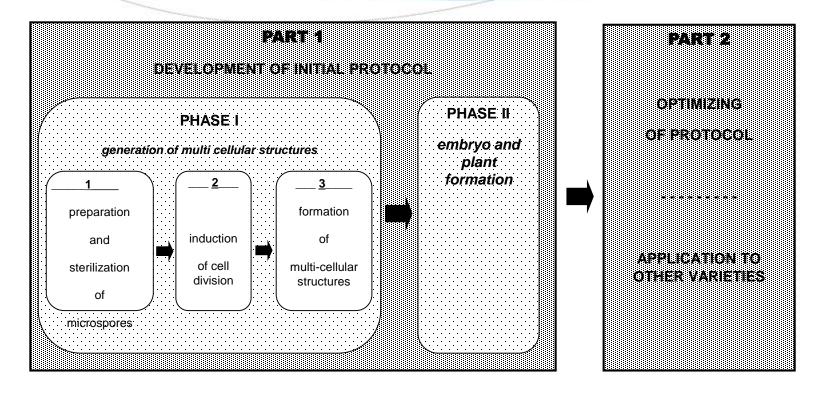
DH plant growth and seed production

Multiple doubled haploid tomato plants. Note difference in plant structure.

Seed production

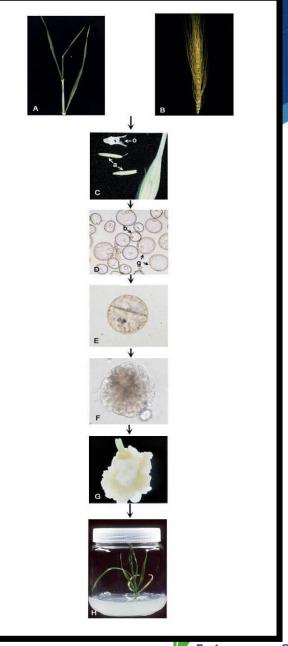
Doubled haploid plant

Seed production


Fruits from doubled haploid plants

Seeds from doubled haploid tomato fruit

Different approach Fytagoras



Different approach Fytagoras

- 1. Donorplant
- 2. Induction of celldivision and growth of multicellulair structures

3. Formation of plants

Growth facilities

Our laboratory

Tissue culture

Fytagoras team working on DH related technologies.

Bert van Duijn CSO

Marco Vennik
Project manager
& Researcher

Cees Broers Researcher

Marijke Kottenhagen Researcher

Yingjie Zhou Post Doc

Wessel Holtman Commercial manager

Sandra van Bergen Researcher

