Generation of doubled haploid plants through microspore regeneration

Why Fytagoras?

- Over 15 years experience in DH technology
 - Protocol development, Protocol implementation, Consultancy
 - Basic scientific research and scientific publications
- Worked for over 8 years on exclusive basis on DH of vegetable crops for one of Holland's leading breeding companies.
- Development of numerous successful DH protocols and commercial implementation
- Ongoing development of DH protocols for different crops (also ornamentals), for several Dutch and foreign seeds companies
- Great track record in (confidential) contract research and in-company instructions

Fytagoras BV

- Experience on a broad range of crops, amongst them some Solanaceae.
- We worked on more than 7 ornamental crops, and more than 5 vegetable crops (such as pepper, and egg plant)
- Barley, rice, and tobacco as model crops
- We developed and implemented an efficient protocol for pepper, where many others failed
- Establishment of different basic approaches in the development of DH plants, which increases the success rate considerably

Why successful?

- **On-going research program** (in cooperation with Leiden University) on the fundamentals of microspore regeneration: evolutionary aspects, metabolism aspects, genes and transcriptions factor, cell signaling aspects, which benefits **protocol development**
- Less trial and error, but instead focus on crucial physiological and cellular processes which are related to the division of microspores, and so the production of a DH plant
- Chemical compounds/hormones only, when we assume that they are relevant for the development of microspores

Why successful?

- Systematic approach:
 - growth conditions
 - single flower treatment
 - energy status of cells
 - stress
 - dedicated treatments
- **supporting techniques** on cells (upgrading, imaging, cell sorting)

Visualization of treatment by image analysis

Treatment of upgraded cells

System for staging development of microspores

- Flower age, and size
- Anther color
- Microspore morphology
- Supporting techniques to use optimal cells

Stages in microspore development

Stages of microspores

2012	 direct control of developmental pathways higher efficiency more tests possible 	 energy status single flower growth 	
2000-2012	Better control of microspore quality	strict growth conditions	
1992-2000	Better control and visualization of cellular processes	from anthers to microspores	
protocol development		research programme	Eytagoras plant scie

plant science

Critical steps in DH technology

- Donor plants; stage of development
- Pretreatment; induction of cell division (many different possibilities)
- Culture; formation of multi-cellular structures; embryos
- Formation of plants
- Implementation of the protocol
- Adaptations of the protocol for all varieties

- Formation of DH plants by regeneration of microspores
- Project is divided in 3 steps
- All activities are done at facilities of Fytagoras
- Delivery is a working protocol, or on request DH plants
- Implementation (support) in your laboratory

• PART 1: From microspores to doubled haploid plants

Phase 1 Induction of multi-cellular structures

- **Step 1** Selection of plant material, technical aspects concerning the preparation of microspores, determination of developmental stages, and characterization of microspores
- Step 2 Pretreatment and induction of cell division
- Step 3 Cultivation and formation of multi-cellular structures
- Phase 2 Embryo and plant formation
- ART 2 Optimizing of the procedure and implementation

Growth facilities

Pictures from our laboratory

plant science

Tissue culture

1. Donorplant

2. Induction of celldivision and growth of multicellulair structures

3. Formation of plants

